
A Generic Annotation Inference Algorithm for the
Safety Certification of Automatically Generated Code

Submitted for blind review.

Abstract
Code generators for realistic application domains are not directly
verifiable in practice. In the certifiable code generation approach
the generator is extended to generate logical annotations (i.e., pre-
and postconditions and loop invariants) along with the programs,
allowing fully automated program proofs of different safety prop-
erties. However, this requires access to the generator sources, and
remains difficult to implement and maintain because the annota-
tions are cross-cutting concerns, both on the object-level (i.e., in
the generated code) and on the meta-level (i.e., in the generator).

Here we describe a new generic post-generation annotation in-
ference algorithm that circumvents these problems. We exploit the
fact that the output of a code generator is highly idiomatic, so that
patterns can be used to describe all code constructs that require an-
notations. The patterns are specific to the idioms of the targeted
code generator and to the safety property to be shown, but the al-
gorithm core remains fully generic. This core is implemented and
instantiated for two generators; the instances are applied success-
fully to fully automatically certify initialization safety for a range
of generated programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification; I.2.2 [Artificial Intelligence]: Deduc-
tion and Theorem Proving; I.2.3 [Artificial Intelligence]: Auto-
matic Programming

Keywords automated code generation, program verification, soft-
ware certification, Hoare calculus, logical annotations, automated
theorem proving.

1. Introduction
Automated code generation is an enabling technology for model-
based software development and has significant potential to im-
prove the entire software development process. It promises many
benefits, including higher productivity, reduced turn-around times,
increased portability, and elimination of manual coding errors.
However, the key to realizing these benefits is of course genera-
tor correctness—nothing is gained from replacing manual coding
errors with automatic coding errors.

Since the direct verification of generators is still unfeasible
with existing verification techniques, several alternative approaches
based on “correct-by-construction” techniques like deductive syn-

[copyright notice will appear here]

thesis [23] or refinement [22] have been explored. However, these
remain difficult to implement and to scale up, and have not found
widespread application. Currently, generators are thus validated
primarily by testing [24], but this quickly becomes excessive and
cannot guarantee the same level of assurance.

Our work follows an alternative approach that is based on the
observation that the correctness of the generator is irrelevant if in-
stead the correctness of the generated programs is shown individu-
ally. In particular, we follow the same pragmatic approach as proof
carrying code (PCC) [19] and focus on the Hoare-style certification
of specific safety properties rather than showing full correctness of
the generated programs. This simplifies the task but it still leaves
us with the problem of constructing the appropriate logical annota-
tions (i.e., pre- and postconditions and loop invariants), due to their
central role in Hoare-style techniques.

In previous work [6, 7, 9, 26], an approach to certifiable program
generation was developed and evaluated, in which the code gener-
ator itself is extended in such a way that it produces the necessary
annotations together with the code. This is achieved by embedding
annotation templates into the code templates, which are then in-
stantiated and refined in parallel by the generator. This approach
was successfully used to certify a variety of safety properties for
code generated by the AUTOBAYES [12] and AUTOFILTER [27]
systems. However, it has two major disadvantages. First, it requires
access to the existing sources: the developers need to modify the
code generator in order to integrate the annotation generation. Un-
fortunately, sources are often not accessible, in particular for com-
mercial generators. Second, it is difficult to implement and to main-
tain: for each safety property, the developers first need to analyze
the generated code in order to identify the location and structure of
the required annotations, then identify the templates that produce
the respective code fragments, and finally formulate and integrate
appropriate annotation templates. This is compounded by the fact
that annotations are cross-cutting concerns, both on the object-level
(i.e., the generated program) and the meta-level (i.e., the generator).

Here we describe an alternative approach that uses a generic
post-generation annotation inference algorithm to circumvent these
problems. We exploit both the highly idiomatic structure of auto-
matically generated code and the restriction to specific safety prop-
erties. Since generated code only constitutes a limited subset of all
possible programs, the new “eureka” insights that are required in
general remain rare in our case. Since safety properties are simpler
than full functional correctness, the required annotations are also
simpler and more regular. We can thus use code patterns to describe
all code constructs that require annotations and templates to de-
scribe the annotations that are required at the pattern locations. We
can then use techniques similar to aspect-oriented programming to
add the annotations to the generated code: the patterns correspond
to (static) point-cut descriptors, while the introduced annotations
correspond to advice.

1 2006/5/13

Similar to the PCC and the certifiable code generation approach-
es, we still split the problem of certifying code into two phases: an
untrusted annotation construction phase, and a simpler but trusted
verification phase where the standard machinery (i.e., verification
condition generator and automated theorem prover) is used to prove
that the code satisfies the safety property. However, our new algo-
rithm concentrates annotation generation in one location and, even
more importantly, leaves the generator unchanged because it can
run completely separately from the generator.

The main contribution of this paper is a generic approach to ex-
tending code generators with a safety certification capability. The
underlying annotation inference algorithm is implemented and has
been applied to certify initialization safety for code generated by
the AUTOBAYES and AUTOFILTER systems. The focus in this pa-
per is on the core algorithm, rather than the subsequent generation
and proof of verification conditions. We use initialization safety as
example property to illustrate the core algorithm, but the algorithm
itself is generic with respect to the safety property. In the next sec-
tion, we briefly provide some background; for more details we refer
to [6, 7, 12]. We then introduce annotation inference informally by
a worked example in Section 3 before we explain the technical de-
tails of the algorithm in Section 4. In Section 5, we summarize the
experiences and experimental results with applying our algorithm
to code generated by AUTOBAYES and AUTOFILTER. The final
two sections discuss related work and conclude with future work.

2. Background
Idiomatic Code Automated code generators derive lower-level
code from higher-level, declarative specifications. Approaches
range from deductive synthesis [23] to template meta-programming
[4] but for our purposes neither the specific approach nor the spec-
ification language matter, and we build on a template-based ap-
proach [5]. What does matter, however, is the fact that an automatic
code generator usually generates highly idiomatic code. Intuitively,
idiomatic code exhibits some regular structure beyond the syntax of
the programming language and uses similar constructions for simi-
lar problems. Manually written code already tends to be idiomatic,
but the applied idioms vary with the programmer. Automated gen-
erators eliminate this variability because they derive code by com-
bining a finite number of building blocks—in our case, templates.
For example, AUTOBAYES and AUTOFILTER only use three tem-
plates to initialize a matrix, resulting in either straight-line code or
one of two doubly-nested loop versions (cf. Figure 1)

A[1,1]:= a1,1;
. . .
A[1,m]:= a1,m;
A[2,1]:= a2,1;
. . .
A[n,m]:= an,m;

for i:= 1 to n do
for j:= 1 to m do
B[i,j]:= b;

for i:= 1 to n do
for j:= 1 to m do

if i=j then
C[i,j]:= c

else
C[i,j]:= c′;

Figure 1. Idiomatic matrix initializations

The idioms are essential to our approach because they (rather
than the templates) determine the interface between the code gen-
erator and the inference algorithm. For each generator and safety
property, our approach thus requires a customization step in which
the relevant idioms are identified and formalized. Note that the id-
ioms can be recognized from a given code base alone, even without
knowing the templates that produced the code. This allows us to
apply our technique to black-box generators as well.

Safety Certification The purpose of safety certification is to
demonstrate that a program does not violate certain conditions dur-
ing its execution. A safety property is an exact characterization

of these conditions based on the operational semantics of the lan-
guage. A safety policy is a set of Hoare rules designed to show that
safe programs satisfy the safety property of interest. The rules can
be formalized using the usual Hoare triples P {c} Q, i.e., if the
condition P holds before and the command c terminates, then Q
holds afterwards (see [18] for more information about Hoare-style
program proofs).

For each notion of safety the appropriate safety property and
corresponding policy must be formulated. This is usually straight-
forward; in particular, a safety policy can be constructed system-
atically by instantiating a generic rule set that is derived from the
standard rules of the Hoare calculus [6]. The basic idea is to ex-
tend the standard environment of program variables with a “shad-
ow” environment of safety variables which record safety informa-
tion related to the corresponding program variables. The rules are
then responsible for maintaining this environment and producing
the appropriate safety obligations. This is done using a family of
safety substitutions that are added to the normal substitutions, and
a family of safety predicates that are added to the calculated weak-
est preconditions (WPCs). Safety certification then starts with the
postcondition true and computes the weakest safety precondition
(WSPC), i.e., the WPC together with all applied safety predicates
and safety substitutions. If the program is safe then the WSPC will
be provable without any assumptions.

Here, we focus on initialization safety, which we use as our run-
ning example but a range of other safety properties, including ab-
sence of out-of-bounds array accesses and nil-pointer dereferences,
have been formalized [19, 6] and can be used with our algorithm.
Initialization safety ensures that each variable or individual array
element has been explicitly assigned a value before it is used. The
safety environment consists of shadow variables xinit that contain
the value INIT after the variable x has been assigned a value. Arrays
are represented by shadow arrays to capture the status of the indi-
vidual elements. Figure 2 shows the rules of the policy. The rules
can be read backwards to compute the WSPCs. For example, the
for-rule says that for an arbitrary postcondition, Q, if c has WSPC
P for the postcondition I[i+1/i], and if the two intermediate VCs
are true, then the WSPC of the loop is as shown. Only statements
assigning a value to a location affect the value of a shadow variable
(cf. the assign-, update-, and for-rules). However, all rules also pro-
duce the appropriate safety predicates safeinit(e) for all immediate
subexpressions e of the statements. Since the safety property de-
fines an expression to be safe if all corresponding shadow variables
have the value INIT, safeinit(x[i]) for example simply translates to
iinit = INIT ∧ (xinit[i]) = INIT.

VC Processing and Annotations As usual in Hoare-style veri-
fication, a verification condition generator (VCG) traverses the an-
notated code and applies the rules of the calculus to produce veri-
fication conditions (VCs). These are then simplified, completed by
an axiomatization of the background theory and passed to an off-
the-shelf automated theorem prover (ATP). If all VCs are proven,
the program is safe with respect to the safety property. Note that the
ATP has no access to the program internals; hence, all pertinent in-
formation must be taken from the annotations, which become part
of the VCs. For full functional verification, annotations are thus
usually very detailed and, consequently, annotation inference re-
mains intractable for this case. For safety certification, on the oth-
er hand, the Hoare-rules have already more internal structure and
the safety predicates are regular and relatively small, so that the
required annotations are a lot simpler. For example, initialization
safety just requires that the logical annotations entail at each use
of a variable x that the corresponding shadow variable xinit has the
value INIT. In addition, the targeted safety property and policy are
known at annotation inference time, which eliminates the need for

2 2006/5/13

(assign)
Q[e/x, INIT/xinit] ∧ safeinit(e) {x := e} Q

(update)
Q[upd(x, e1, e2)/x, upd(xinit, e1, INIT)/xinit] ∧ safeinit(e1) ∧ safeinit(e2) {x[e1] := e2} Q

(if)
P1 {c1} Q P2 {c2} Q

(b ⇒ P1) ∧ (¬b ⇒ P2) ∧ safeinit(b) {if b then c1 else c2} Q

(while)
P {c} I I ∧ b ⇒ P I ∧ ¬b ⇒ Q

I ∧ safeinit(b) {while b inv I do c} Q

(for)
P {c} I[i + 1/i] I[INIT/iinit] ∧ e1 ≤ i ≤ e2 ⇒ P I[e2 + 1/i] ⇒ Q

I[e1/i] ∧ e1 ≤ e2 ∧ safeinit(e1) ∧ safeinit(e2) {for i := e1 to e2 inv I do c} Q

(comp)
P {c1} R R {c2} Q

P {c1 ; c2} Q
(skip)

Q {skip} Q
(assert)

P ′ ⇒ P P {c} Q′ Q′ ⇒ Q

P ′ {pre P ′ c post Q′} Q

Figure 2. Proof rules for initialization safety

any logical reasoning in the style of the early inference approaches
[25].

System Architecture Figure 3 shows the overall system archi-
tecture of our certification approach. At its core is the original (un-
modified) code generator which is complemented by the annota-
tion inference subsystem, including the pattern library, as well as
the “standard machinery” for Hoare-style techniques, i.e., VCG,
simplifier, ATP, proof checker, and domain theory. These compo-
nents and their interactions are described in the rest of this paper
and in more detail in [6, 8, 26]. As in the PCC approach, the ar-
chitecture distinguishes between trusted and untrusted components,
shown in Figure 3 in red (dark grey) and blue (light grey), respec-
tively. Trusted components must be correct because any errors in
them can compromise the assurance provided by the overall sys-
tem. Untrusted components, on the other hand, are not crucial to
the assurance because their results are double-checked by at least
one trusted component. In particular, the assurance provided by a
certifiable program generation system does not depend on the cor-
rectness of its two largest components: the original code genera-
tor, and the ATP; instead, we need only trust the safety policy, the
VCG, the domain theory, and the proof checker. Moreover, the an-
notation inference subsystem and pattern library are also untrusted
since the resulting annotations simply serve as “hints” for the sub-
sequent analysis steps.

3. A Worked Example
Before we describe the details of the inference algorithm, we illus-
trate it by means of a worked example. Figure 4(a) shows a simple
program that initializes two vectors A and B of size N with given
but irrelevant values ai and b (cf. lines 2.1–2.n and 3.1–3.2, resp.)
and then computes and returns the sums s and t of their respec-
tive elements as well as their dot-product d. It is derived from and
representative of the code generated by AUTOFILTER; in particu-
lar it shows the same overall structure—a series of variable defini-
tions followed by a loop with variable uses. AUTOFILTER’s target
language is a simple imperative language with basic control con-
structs (i.e., if and for) and numeric scalars and arrays as the on-
ly datatypes. However, the language also supports domain-specific
operations on entire vectors and matrices like matrix multiplication
or assignment, although these are not used in the example shown in
Figure 4.

The aim of the inference algorithm is to “get information from
definitions to the uses”, i.e., to annotate the program in such a
way that the VCG will have the necessary information to show

the program safe with respect to the given property as it works its
way back through the program. In the example therefore we need—
amongst others—an invariant for the loop at line 5.1 that ensures
that the shadow variables corresponding to the scalar variables s,
t, and d and to the arrays A and B have the value INIT.

Since the safety-relevant information is represented by the shad-
ow variables, the inference algorithm first scans the code for the rel-
evant corresponding program variables. For each relevant variable,
the algorithm then builds an abstracted control flow graph where
irrelevant parts of the program are collapsed into single nodes and
follows all paths backwards from the variable’s use nodes until it
encounters either a cycle or a definition node for the variable. Paths
that do not end in a definition are discarded and the remaining paths
are traversed node by node. First the definitions themselves are an-
notated, and then annotations are added to all intermediate nodes
that otherwise constitute barriers to the information flow.

For initialization safety all variables that are used on the right-
hand side of assignments (more precisely, in rvar-positions) are
relevant, but for this example we will restrict our attention to the
two array variables A and B, starting with B which is used in lines
5.3 and 5.4. Both uses are abstracted into use(B), cf. Figure 4(b).
The only assignment to B is in line 3.2; however, this is not the en-
tire definition—the algorithm needs to identify the for-loop (lines
3.1-3.2) as the definition for the entire array B and abstract it in-
to the definition node def (B[1:N]). The path search then starts at
line 5.4 and goes straight back up to the for-loop at line 5.1, where
it splits. One branch comes in from the bottom of the loop-body but
this immediately leads to a cycle and is therefore discarded. The
other branch continues through lines 4.1–4.3 and terminates at the
definition node at line 3.1. Since all branches have been exhausted,
there is only one path along which annotations need to be added.
The annotation process starts with the use and proceeds towards the
definition terminating the path. The form of all annotations is fully
determined by the known syntactic structure of the definition and
by the safety property. Since the definition is a (singly-nested) loop,
in this case, it needs a loop invariant as well as a postcondition.
Since the safety property is initialization safety, both invariant and
postcondition need to formalize that the shadow variable Binit cor-
responding to the current array variable B records the value INIT for
the already initialized entries. Note that the different upper bounds
for the quantifiers can both be constructed from the loop. The post-
condition is then pulled along the remaining path, i.e., added to all
nodes that require it. Every node needs to be inspected, but in this
case only the for-loop at line 5.1 requires an invariant. Figure 4(c)
shows the partially annotated program that results from this pass.

3 2006/5/13

code

checker

proof

trusted

untrusted

certificate

proofsVCs

axioms / lemmas

proofs

rewrite

rules

problem

VCssafety

policy

spec.

ATP

theory

domain

VCG simplifier

code

generator

annotation

inference

annotated code

pattern

library

Figure 3. System architecture

1.1
1.2
1.3

2.1

2.n

3.1

3.2

4.1
4.2
4.3

5.1

5.2
5.3
5.4

6

const N:= n;
var i,s,t,d;
var A[1:N],B[1:N];
A[1]:= a1;
. . .
A[n]:= an;

for i:=1 to N do

B[i]:= b;

s:=0;
t:=0;
d:=0;

for i:=1 to N do

s:=s+A[i];
t:=t+B[i];
d:=d+A[i]*B[i];

return s,t,d;

(a)

const N:= n;
var i,s,t,d;
var A[1:N],B[1:N];
A[1]:= a1;
. . .
A[n]:= an;

def(B[1:N]);

s:=0;
t:=0;
d:=0;

for i:=1 to N do

t:=t+A[i];
use(B);
use(B);

return s,t,d;

(b)

const N:= n;
var i,s,t,d;
var A[1:N],B[1:N];
A[1]:= a1;
. . .
A[n]:= an;

for i:=1 to N
inv ∀j∈{1: i − 1}·Binit[j]= INIT

do
B[i]:= b;

post ∀j∈{1:N}·Binit[j]= INIT

s:=0;
t:=0;
d:=0;

for i:=1 to N
inv ∀j∈{1:N}·Binit[j]= INIT

do

s:=s+A[i];
t:=t+B[i];
d:=d+A[i]*B[i];

return s,t,d;

(c)

block;

def(A[1:N]);

barrier;

block;

for i:=1 to N do

use(A);
block;
use(A);

block;

(d)

const N:= n;
var i,s,t,d;
var A[1:N],B[1:N];
A[1]:= a1;
. . .
A[n]:= an;
post ∀j∈{1:n}·Ainit[j]= INIT

for i:=1 to N
inv ∀j∈{1:n}·Ainit[j]= INIT

∧ ∀j∈{1: i − 1}·Binit[j]= INIT do
B[i]:= b;

post ∀j∈{1:n}·Ainit[j]= INIT

∧ ∀j∈{1:N}·Binit[j]= INIT

s:=0;
t:=0;
d:=0;

for i:=1 to N
inv ∀j∈{1:n}·Ainit[j]= INIT

∧ ∀j∈{1:N}·Binit[j]= INIT

∧ sinit = tinit =dinit = INIT do
s:=s+A[i];
t:=t+B[i];
d:=d+A[i]*B[i];

post sinit = tinit =dinit = INIT

return s,t,d;

(e)

Figure 4. (a) Original program (b) Abstraction for B (c) Annotations for B (d) Abstraction for A (using block-patterns) (e) Fully annotated
program.

The next pass adds the annotations for A (cf. Figure 4(d)). As
before, its two uses in lines 5.2 and 5.4 are abstracted. A is initial-
ized using a different idiom—a sequence of assignments, cf. lines
2.1–2.n—which is again collapsed into a def -node; here, the ini-
tialized range is taken from the first and last assignment, respec-
tively. The program is then collapsed further by the introduction of
barrier- and block-nodes. These represent areas that do not need to
be explored because they cannot contain relevant definitions, thus
substantially reducing the number of paths. Both are also described
by property-specific patterns. However, the barrier-nodes must be

re-expanded during the path traversal phase because they require
annotations (cf. line 3.1) while block-nodes remain opaque. Except
for this special handling, the algorithm proceeds as before, and Fig-
ure 4(e) shows the resulting fully annotated program.

4. Inference Algorithm
The previous section shows that the set of idiomatic coding patterns
which are used is the key knowledge that drives the annotation
construction. Finding instances of these patterns in the code is not
a general program understanding problem: we are not concerned

4 2006/5/13

global SP:Property;
P :AST;

proc ann_prog() =
var patterns: list Pattern;

var : Id;
uses : list Position;
use : Position;
cfg : CFG;
path : Path

begin
patterns := get_patterns(SP);
foreach (var,uses) in compute_hotvars() do
cfg := compute_cfg(patterns, var);
foreach use in uses do

foreach path in compute_paths(cfg, use) do
ann_path(path);

end

Figure 5. Top-level Algorithm

with identifying general-purpose coding patterns and cliches [21]
but only the relevant definitions and uses. These are specific to the
given safety property, but the algorithm remains the same for each
policy. In the case of initialization safety, the definitions are the
different initialization blocks as shown in Figure 1, while the uses
are statements which read a variable (i.e., contain an rvar). In the
case of array bounds safety, the definitions correspond to the array
declarations since the shadow variables get their values from the
declared bounds, while the uses are statements which access an
array variable.

4.1 Top-level Algorithm Structure

The top-level structure of the algorithm (cf. Figure 5) closely fol-
lows the outline above. The safety property SP and the abstract
syntax tree of the program P are used by all functions and given
as global variables. The overall result is returned by side-effects
on P. ann prog first accesses the property-specific patterns for
definitions, uses and barriers. It then further reduces the inference
efforts by limiting the analysis to certain program hot spots which
are determined by the so-called “hot variables” described in the
next section.

4.2 Hot Variable Identification

Proving a program safe requires annotations at the points where the
VCG needs information about the contents of the essential shadow
variables. However, not all uses of all variables are essential, and
to see why, consider how a VCG processes a program. The VCG
works back through the program, gradually constructing a WPC
and generating safety obligations whenever required by the rules
of the safety policy. These safety obligations will ultimately be
discharged in the context of the safety substitutions that accumulate
earlier in the program. If something is missing from that context, it
must be provided by an annotation.

We call a variable available (wrt. a safety property) at a program
location if this location is within reach of the variable’s definition,
i.e., there are no barriers on the paths from the definition nodes to
the use node. For example, immediately after a scalar assignment,
the assigned variable is available but it becomes unavailable if
there is an intervening loop. We say that a variable use is hot if
it unavailable, and call a variable a “hot variable” (or hotvar for
short) if at least one of its uses is hot.

The function compute hotvars used in Figure 5 maintains
a list of available variables, initially set to empty, and scans for-
ward through the program, deciding for each statement (and the
given property) how it affects the availability of the variables. For
example, we assume that scalar assignments add to the available

P ::= x x ∈ X
| f(P1, . . . , Pn) f ∈ Σ
| | P? | P* | P+
| P1||P2 | P1 ; P2

| P1 ∈ P2 | P1 ∈/P2

Figure 6. Pattern Grammar

variables, but array assignments do not: because arrays are typi-
cally accessed indirectly using loops and variable indices, all uses
should be treated as hot. For each statement that matches the policy-
specific use pattern, the algorithm also checks if the used variable
is available; if it is not, that use is tagged as being hot.

The algorithm then passes through the program before the an-
notation phase, and collects all hotvars and hot uses, since these
are the only variables for which it needs to construct annotations.
Note that the hotvars are computed before the pattern analysis, and
in order to minimize the work in that and subsequent stages. The
hot variables are therefore approximated conservatively, i.e., we err
on the side of designating uses as hot and could even treat all uses
as hot However, limiting the number of hot variables is a crucial
optimization to cut down the number of graphs to be constructed
(cf. Section 4.4).

4.3 Patterns and Pattern Matching

The algorithm uses patterns to capture the idiomatic code structures
and pattern matching to find the corresponding code locations.
Each pattern specifies a class of fragments that are treated similarly
by the algorithm, e.g., because they require a similar annotation.

The pattern language is essentially a tree-based regular expres-
sion language similar to XML-based languages like XPath [1]; Fig-
ure 6 shows its grammar. The language supports matching of tree
literals f(P1, . . . Pn) (if the signature Σ is given by the program-
ming language to be analyzed, we will also use its concrete syntax
to formulate example patterns), wildcards () and the usual regular
operators for optional (?), list (*) and non-empty list (+) patterns,
as well as alternation (||) and concatenation (;) operators. It al-
so supports matching at arbitrary subterm positions (i.e., P1 ∈ P2

matches all terms that match P2 and have at last one subterm that
matches P1; similarly, P1 ∈/ P2 matches all terms that match P2

and have no subterm that matches P1). Matching arbitrarily nested
terms of the form f(· · · f(x) · · ·)) is not required for our purposes.

However, the main difference to XPath and similar languages
is that we use meta-variable patterns x to introduce a limited de-
gree of context dependency. Like a wildcard, an uninstantiated
meta-variable matches any term but, unlike a wildcard, it be-
comes instantiated with the matched term and thus subsequent-
ly only in other instances of the instantiated pattern. For ex-
ample, the pattern ([]:=)+ matches the entire statement list
A[1]:=1;A[2]:=2;B[1]:=1 while the pattern (x[]:=)+
matches, after the instantiation of x with A on the first statement,
only the following second assignment to A but not the final assign-
ment to B. Further context-dependencies are introduced by multiple
occurrences of the same meta-variable in a pattern. Hence, the pat-
tern for x := to inv do [x, x]:= can be used to identify
loops that access only the diagonal elements of any matrix.

The match procedure traverses terms first top-down and then
left-to-right over the direct subterms. Meta-variables are instantiat-
ed eagerly (i.e., as close to the root as possible) but instantiations
are undone if the enclosing pattern fails later on. List patterns fol-
low the usual “longest match” strategy used in almost all traditional
regular expression matchers. The match procedure returns as result
a set of (Position × IN × Substitution)-triples where the first two

5 2006/5/13

arguments are the root position and length of the match of the top-
level pattern.

4.4 Abstracted Control Flow Graphs

The algorithm follows the control flow paths from variable use
nodes backwards to all corresponding definitions and annotates the
statements along these paths as required (see the next two sec-
tions for details). However, it does not traverse the usual control
flow graphs (CFGs) but abstracted versions, in which entire code
fragments matching specific patterns are collapsed into individual
nodes. Since the patterns can depend on the variables, separate ab-
stracted CFGs must be constructed for each given hotvar. The con-
struction is based on a straightforward syntax-directed algorithm as
for example described in [15].1 The only variation is that the algo-
rithm first matches the program against the different patterns, using
the algorithm described in the section above, and in the case of a
match constructs a single node of the class corresponding to the
successful pattern, rather than using the standard construction and
recursively descending into the statements subterms.

In addition to the syntactic classes representing the different
statement types of the programming language, the abstracted CFG
can thus contain nodes of several different pattern classes. The al-
gorithm requires use- and def -nodes and uses barrier-, barrier-
block- and block-nodes as optimizations. All of these represent
code chunks that the algorithm regards as opaque (to different de-
grees) because they contain no definition for the given variable.
They can therefore be treated as atomic nodes for the purpose of
path search, which drastically reduces the number of paths that
need be explored. barrier-nodes represent any statements that re-
quire annotations, i.e., principally loops. They must therefore be
re-expanded and traversed during the annotation of the algorithm.
In contrast, block-nodes are completely irrelevant to the hotvar be-
cause they neither require annotations (i.e., contain no barriers) nor
contribute to annotations (i.e., in our running example they con-
tain no occurrence of the hotvar in an lvar-position). They can thus
also remain atomic during the annotation phase, i.e., are not en-
tered on path traversal. Blocks are typically loop-free sequences of
assignments and (nested) conditionals. barrier-blocks constitute a
further optimization by combining the other two concepts: they are
essentially barriers wrapped into larger blocks. Hence, they must be
re-expanded during annotation, like normal barrier-nodes. The al-
gorithm must further distinguish between reaching a (barrier) block
from behind and from within. Coming from behind, it can treat the
block opaquely, as described above. Coming from within (i.e., start-
ing from the initial use), the algorithm must ignore the block label,
and regard the node as the underlying statement. This means it has
to keep track of the previous location as it navigates along paths.

4.5 Annotation of Paths

For each use of a hotvar, the path computation in the previous
section returns a list of paths to putative definitions: although they
have been identified by successful matches, there is no way to
tell at this stage which, if any, of the definitions are relevant.
In fact, it may be that several separate definitions are needed to
fully define a variable for a single use. In a sense, the paths
are untrusted and their correctness is established by annotating
all barriers between the uses and definitions. Since this must take
control flow into account, the current annotation is computed as the
weakest precondition of the previous annotation.

1 Since the generators only produce well-structured programs, a syntax-
directed graph construction is sufficient. However, if necessary, we could
replace the graph construction algorithm by a more general version that can
handle ill-structured programs.

Paths are then annotated in two stages. First, unless it has al-
ready been done (during a previous path), the definition at the end
of the path is annotated, and the current annotation is set to its post-
condition (cf. Section 4.6). If the use is contained within the defini-
tion then the path does not need to be continued because the defini-
tion will have been fully annotated “internally”; otherwise, we go
on to the rest of the path.

The path annotation (Figure 7) works back along the path from
a use to a definition, computing weakest preconditions along the
way, and annotating loops and barriers as appropriate. Both the
computation of preconditions and the insertion of annotations are
done node by node rather than statement by statement.

At each point, we know the current weakest precondition, the
previous location, the original use location (i.e., the start of the
current path) and the hotvar. The previous location is needed to
compute the precondition, and the hotvar and use location are used
to prevent duplicate annotations.

It first checks whether the current node is visible2 from the
definition. If so, then we are finished since the VCG will have
all the information it needs from this point onwards. Likewise, if
this is the last node (that is, the one before the def), then we’re
finished annotating. If not, we look to see if this node has already
been annotated.

If so, we skip to the next node. If not, we distinguish several cas-
es, depending on whether it’s a loop or a barrier or an opaque node
(blocks and barrier blocks), whether the previous node is within
the current node, and whether the next node is within the current
node. Once we’ve dealt with a node, the weakest precondition of
that node is calculated, and we move on to the next node.

The WPC of a node is somewhat subtle and depends on whether
or not it is a barrier or opaque, the statement itself (for basic
blocks), and the previous location. In many cases the WPC does
not change. For those cases where it does, the new WPC needs
to be computed by looking at the statement. We distinguish atomic
and compound statements. Compound statements (series, if, for,
while) can only change the WPC if the previous location is after
a loop, in which case WPC(P, C) = end(C) ⇒ P , where P is
the incoming postcondition, C is the statement, and end(C) is the
end condition for the loop, C. For while b do c, this is ¬ b, and for
fori:=e1 toe2 doc, this is i > e2. In other words, the WPC says “if
the loop has terminated then P ”. For atomic statements we compute
the weakest precondition by calling the VCG and simplifying the
result.

4.6 Annotation of Nodes

The path traversal described above calls the actual annotation rou-
tines when it needs to annotate a node. For annotation, we distin-
guish three classes of nodes: definitions, barriers, and loops (i.e.,
basic nodes which are loops).

The most important (and interesting) class is the definitions.
This is really the core of the whole system, and where the annota-
tion knowledge is represented in the form of annotation schemas,
which take a match (identifying the pattern and location), and use
meta-programming to construct and insert the annotations.

For example, each initialization block from Figure 1 is defined
by a separate pattern and has a corresponding annotation schema.
In each case, a final outer postcondition ∀I : 1 ≤ I ≤ n.∀J.1 ≤
J ≤ m.Xinit(I, J) = init (where X is the matrix) is inserted,
while 1(b) and 1(c) also get an inner postcondition, as well as inner
and outer invariants.

Note that even after a pattern has been successfully matched, an
annotation schema might still fail its preconditions. For example,

2 A node is visible from another node if it comes after it in a path through
the CFG and there are no barriers between the nodes.

6 2006/5/13

proc ann_path(Hot, Path, PrevLoc, Post, UseLoc) :=
case Path of
[] -> done
Node::NodeList ->
if node_visible(NodeList) or NodeList = [] then

done
else
Loc := get_node_location(Node);
NextNode := head(NodeList);
NextLoc := get_node_location(NextNode);
if is_annotated(Loc, Post, UseLoc, Hot) then

skip
else

if node_is_barrier_or_opaque(Node) then
if within(PrevLoc, Loc) then

if node_is_loop(Node) then
if within(NextLoc, Loc) then
ann_loop_node(Node, Post, UseLoc, Hot)
else
ann_barrier_node(Node, Post, UseLoc, Hot)

else
skip

else ann_barrier_node(Node, Post, UseLoc, Hot)
else

if node_is_loop(Node) then
if within(NextLoc, Loc) then
ann_loop_node(Node, Post, UseLoc, Hot)

else
ann_barrier_node(Node, Post, UseLoc, Hot)

else skip;
Pre := node_precondition(PrevLoc, Post, Node);
ann_path(Hot, NodeList, Loc, Pre, UseLoc)

Figure 7. Path Annotation Algorithm

the binary assignment schema (Figure 1(a)) simply matches against
a sequence of assignments, but the schema further requires that the
indices of the first and last assignments are the low and the high,
respectively.

The annotation schemas can handle more complicated examples
than the “pure” definitions directly reflected by the patterns. A
common situation is for a barrier to appear within a definition.
Consider the following simple example:

1 for i:=1 to N do
2 a[i]:=0;
3 for j:=1 to N do . . .

The definition pattern is a single nested initialization, but the for-
loop at (3) means that an extra postcondition, ainit[i] = init, is
needed on (2) to push the initialization through the body. However,
if the for-barrier is before the assignment no extra annotation is
needed. In general, the schemas are able to deal with such cases
and maintain the “internal” flow of information within a definition.

5. Experiences
We have implemented the generic inference algorithm in about
4000 lines of documented Prolog code and instantiated it to cer-
tify initialization safety for code generated by AUTOBAYES and
AUTOFILTER. The “declarative content” was surprisingly small: it
only required instantiations of the pattern library but no changes to
the algorithm itself.

5.1 AutoFilter

For AUTOFILTER, the definitions are given by two of the matrix
initialization idioms in Figure 1, along with the direct matrix as-

Spec. |P | |A | N Tgen TATP |A | N Tinf TATP

ds1 235 439 22 / - 16 41 494 19 / - 22 46
iss 523 441 27 / - 29 52 547 24 / - 46 49
segm 182 1278 105 / 6 22 628 1584 109 / - 54 202

178 1332 114 / 10 24 903 1643 108 / 5 54 556

Table 1. Generated vs. Inferred Annotations

signment operation ::=. This is captured by the following pattern:

defAF(x) ::= x:= || x::=
|| (x[,]:=)+
|| for i := to do

for j := to do
if then x[i, j]:= else x[i, j]:=

Like all patterns here, this is parametrized over a hotvar x, so that
defAF(x) is the pattern of definitions for x, barrier(x) (see below)
is a barrier on a path from a use of x to its definition, and so on. Note
that i and j are “free” meta-variables that get instantiated by the
actual loop index variables. The patterns can also contain “junk”,
i.e., arbitrary code that can be interspersed with the match. This is
easily defined by a junk operator omitted here.

Barriers are defined as for-loops without any occurrence of the
hotvar. Loops with the hotvar are then simply treated by the normal
CFG-routines, i.e., not collapsed. Finally, blocks are conditionals
whose branches are deemed “irrelevant”, which means they have
no occurrence of a barrier or hotvar.

barrierAF(x) ::= x ∈/ (for to do)

blockAF(x) ::= if (x ∈/) then irr(x) else irr(x)
|| for to do irr(x)

Here irr(x) = (x || barrierAF(x)) ∈/ is an auxiliary pattern
blocking all occurrences of the hotvar or a barrier. We omit the
easy pattern for uses.

5.2 AutoBayes

AUTOBAYES has similar patterns to AUTOFILTER, for vectors as
well as matrices, but does not need the ::=-pattern since it does
not generate direct matrix operations. It has several more for-
loop patterns, as well as two additional language constructs, abort,
which appears in the definition pattern, and while-loops, which
can form additional barriers. Blocks and uses are the same as for
AUTOFILTER.

defAB(x) ::= (x[]:=)+||(x[,]:=)+
|| for i := to do x[i]:=
|| for i := to do x[i, i ∈/]:=
|| for i := to do

for j := to do x[i, j]:=
|| for i := to do

for j := to do
if then abort else x[i, j]:=

barrierAB(x) ::= x ∈/ (for to do)
|| x ∈/ (while do)

5.3 Results

Table 1 compares the results achieved by the new algorithm to those
previously achieved in the certifiable code generation approach.
The first two examples are AUTOFILTER specifications. ds1 is tak-
en from the attitude control system of NASA’s Deep Space One
mission [27]. iss specifies a component in a simulation environ-
ment for the Space Shuttle docking procedure at the International
Space Station. segm describes an image segmentation problem for
planetary nebula images taken by the Hubble Space Telescope. For
this, AUTOBAYES synthesizes two different versions of an iterative

7 2006/5/13

numerical clustering algorithm. For each example, the table lists
the size of the generated program, and then, for each approach, the
sizes of the generated resp. inferred annotations, the numbers of
generated and failed safety obligations, resp., as well as the run-
times and proof times in seconds.

For the two AUTOFILTER examples, both techniques prove to
be very similar. The inferred annotations are slightly larger (by 15–
25%) than the generated ones but, due to simplifications, they in-
duce fewer VCs. For both approaches, the programs are certifiable
fully automatically: all VCs are proven by the ATP. For the AU-
TOBAYES example, the situation is more complicated. Here, the
previous approach to annotation generation within the code gener-
ator has not kept up with ongoing development and the annotations
are now insufficient to prove the programs safe—even though they
are. With the patterns described above, annotation inference can,
in contrast, certify the first program but it too remains too weak
for the second program, as a required code pattern turns out to be
missing. However, this pattern could be easily added, and with sig-
nificantly less effort than modifying the generator itself. In both
cases, the inferred annotations are again slightly larger, with fewer
VCs induced.

Since it needs to build and traverse the CFGs, the inference
approach is (substantially) slower than the generation approach,
which only needs to expand templates. However, the introduction
of block- and barrier-nodes cuts down the size of the CFGs dra-
matically, and we expect further speed-up from an optimized im-
plementation. Moreover, the limiting factors overall are the proof
times which are comparable (modulo failed VCs) in all cases, indi-
cating that the inference does not introduce new complexity for the
ATP.

6. Related Work
Logical annotations were recognized early on as one of the bot-
tlenecks in program verification. Wegbreit [25] complained that
“completely specifying the predicates on loops is tedious, error
prone and redundant”, and claimed that “loop predicates can be de-
rived mechanically”. Like other early work [10, 16], his approach is
based on predicate propagation. Such methods use inference rules
similar to a strongest postcondition calculus to push an initial logi-
cal annotation forward through the program. Loops are handled by
a combination of different heuristics like weakening or strengthen-
ing and loop unrolling, until a fixpoint is achieved. However, these
methods still need an initial annotation, and unlike our approach,
the loop handling still induces a search space at inference time.
Moreover, the constructed annotations are often only candidate in-
variants and need to be validated (or refuted) during inference, be-
cause they increase the search space.

Abstract interpretation has been used to infer annotations in
separation logic for pointer programs [17] although the techniques
required there are fairly specialized and elaborate compared to our
patterns. The Coverity static analyzer [2] can be customized by
macros that are simple versions of our patterns.

Finally, generate-and-test methods have been applied to our
problem. Here, the generator phase uses a fixed pattern catalogue to
construct candidate annotations while the test phase tries to validate
(or refute) them, using dynamic or static methods. Daikon [11] is
the best-known dynamic annotation inference tool in this category.
Its tester accepts all candidates that hold without falsification but
with a sufficient degree of support over the test suite. In order to
verify the candidates, Daikon has also been combined [20] with
the ESC/Java static checker [14]. In some cases, this combination
even resulted in full safety proofs (wrt. the safety policy supported
by ESC/Java). In general, however, dynamic annotation generation
techniques remain incomplete because they rely on a test suite to
generate the candidates and can thus miss annotations on paths that

are not executed often enough (or not at all). Houdini [13] is a static
generate-and-test tool that uses ESC/Java to statically refute invalid
candidates. Since ESC/Java is a modular checker, Houdini has to
start with a candidate set for the entire program and then iterate
until a fixpoint is reached. This increases the computational effort
required, and in order to keep the approach tractable, the pattern
catalogue is deliberately kept small. Hence, Houdini is incomplete,
and acts more as a debugging tool than as a certification tool.

7. Conclusions and Future Work
The certification system based on annotation inference as described
here is much more flexible and extensible than the previous certi-
fication architecture [7]. Over time, extensions and modifications
to the code generators had led to a situation of “entropic decay”
where the generated annotations had not kept pace with the gen-
erated code. The new inference mechanism was able to automat-
ically certify the same programs as the original system, as well
as some subsequent extensions. However, as Table 1 shows, the
re-construction is not yet complete, and we continue to extend the
new system. These system extensions require less effort than before
since the patterns and annotation schemas are expressed declara-
tively and in one place, in contrast to the previous decentralized
architecture where certification information is distributed through-
out the code generator.

We have implemented several optimizations which cut down on
redundant annotations. This is important since the same annotations
can arise on multiple paths. Furthermore, many computational op-
timizations could be achieved by merging several of the phases.

Our approach offers a general framework for augmenting code
generators with a certification component, and we have started a
project to apply it to MathWorks Real-Time Workshop [3]. Our
techniques could also be adapted to other annotation languages.

There is a strong interaction between the VCG and the annota-
tions. It is possible to modify the VCG so that it does some anal-
ysis and requires less annotations. This would, however, mean that
a greater part of the certification system must be trusted. Neverthe-
less, we would like have a “safety dial” whereby users can trade off
trustedness with speed (which depends, inter alia, on the number
of annotations which must be checked). Further empirical studies
will be required to determine the most effective balance.

References
[1] XML Path Language (XPath) Version 1.0, 1999.

http://www.w3.org/TR/xpath.

[2] Coverity, 2006. http://www.coverity.com.

[3] MathWorks Real-Time Workshop home page, 2006.

http://www.mathworks.com/products/rtw.

[4] David Abrahams and Aleksey Gurtovoy. C++ Template Metapro-
gramming. Addison-Wesley, 2005.

[5] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley, 2000.

[6] Ewen Denney and Bernd Fischer. Correctness of source-level safety
policies. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli,
editors, Proc. FM 2003: Formal Methods, volume 2805 of LNCS,
pages 894–913, Pisa, Italy, September 2003. Springer.

[7] Ewen Denney and Bernd Fischer. Certifiable program generation. In
Robert Glück and Michael R. Lowry, editors, Proc. Conf. Generative
Programming and Component Engineering, volume 3676 of LNCS,
pages 17–28, Tallinn, Estonia, September29–October1 2005. Springer.

[8] Ewen Denney, Bernd Fischer, and Johann Schumann. An empirical
evaluation of automated theorem provers in software certification.
International Journal of AI Tools, 2005. To appear.

8 2006/5/13

[9] Ewen Denney, Bernd Fischer, and Johann Schumann. An empirical
evaluation of automated theorem provers in software certification.
International Journal of AI Tools, 15(1):81–107, February 2006.

[10] Nachum Dershowitz and Zohar Manna. Inference rules for program
annotation. pages 158–167.

[11] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David
Notkin. Dynamically discovering likely program invariants to support
program evolution. IEEE TSE, 27(2):1–25, February 2001.

[12] Bernd Fischer and Johann Schumann. AutoBayes: A system for
generating data analysis programs from statistical models. JFP,
13(3):483–508, May 2003.

[13] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation
assistant for ESC/Java. In J.N. Oliveira and Pamela Zave, editors,
Proc. FME 2001: Formal Methods for Increasing Software Produc-
tivity, volume 2021 of LNCS, pages 500–517, Berlin, March 12–16
2001. Springer.

[14] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static checking
for Java. In Laurie J. Hendren, editor, Proc. PLDI 2002, pages 234–
245, Berlin, Germany, June 17–19 2002. ACM Press. Published as
SIGPLAN Notices 37(5).

[15] Mary-Jean Harrold and Gregg Rothermel. Syntax-directed construc-
tion of program dependence graphs. Technical Report OSU-CISRC-
5/96-TR32, The Ohio State University, 1996.

[16] Shmuel Katz and Zohar Manna. Logical analysis of programs. CACM,
19(4):188–206, April 1976.

[17] Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Automatic
Verification of Pointer Programs Using Grammar-Based Shape
Analysis. In Proceedings of the 14th European Symposium on
Programming (ESOP’05), volume 3444 of LNCS, pages 124–240.
Springer Verlag, April 2005.

[18] John C. Mitchell. Foundations for Programming Languages. The
MIT Press, 1996.

[19] Georce C. Necula. Proof-carrying code. In Proc. 24th POPL, pages
106–19, Paris, France, January 15–17 1997. ACM Press.

[20] Jeremy W. Nimmer and Michael D. Ernst. Static verification of
dynamically detected invariants: Integrating Daikon and ESC/Java. In
Klaus Havelund and Grigore Roşu, editors, Proc. First Workshop on
Runtime Verification, volume 55 (2) of Electronic Notes in Theoretical
Computer Science. Elsevier, 2001.

[21] Charles Rich and Linda M. Wills. Recognizing a programs’s
description: A graph-parsing approach. IEEE Software, 7(1):82–89,
1990.

[22] Douglas R. Smith. KIDS: A semi-automatic program development
system. IEEE TSE, 16(9):1024–1043, September 1990.

[23] Mark Stickel, Richard Waldinger, Michael Lowry, Thomas Press-
burger, and Ian Underwood. Deductive composition of astronomical
software from subroutine libraries. In Alan Bundy, editor, Proc.
12th CADE, volume 814 of LNAI, pages 341–355, Nancy, June-July
1994. Springer.

[24] Ingo Stürmer, Daniela Weinberg, and Mirko Conrad. Overview of
existing safeguarding techniques for automatically generated code.
SIGSOFT Software Engineering Notes, 30(4):1–6, July 2005.

[25] Ben Wegbreit. The synthesis of loop predicates. CACM, 17(2):102–
112, 1974.

[26] Michael Whalen, Johann Schumann, and Bernd Fischer. Synthesizing
certified code. In Lars-Henrik Eriksson and Peter Alexander Lindsay,
editors, Proc. FME 2002: Formal Methods—Getting IT Right, volume
2391 of LNCS, pages 431–450, Copenhagen, Denmark, July 2002.
Springer.

[27] Jon Whittle and Johann Schumann. Automating the implementation
of Kalman filter algorithms. ACM Transactions on Mathematical
Software, 30(4):434–453, December 2004.

9 2006/5/13

